Chapter 6: Q39E (page 353)
If \(f\) is a positive function and \({f^{\prime \prime }}(x) < 0\)for, show that\({T_n} < \int_a^b f (x)dx < {M_n}\).
Short Answer
It is proved that \({T_n} < \int_a^b f (x)dx < {M_n}\)
Chapter 6: Q39E (page 353)
If \(f\) is a positive function and \({f^{\prime \prime }}(x) < 0\)for, show that\({T_n} < \int_a^b f (x)dx < {M_n}\).
It is proved that \({T_n} < \int_a^b f (x)dx < {M_n}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral \(\int\limits_0^{{\raise0.7ex\hbox{\(\pi \)} \!\mathord{\left/
{\vphantom {\pi 2}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{\(2\)}}} {{{\sin }^5}xdx} \)
Evaluate the integral\(\int {\frac{{3t - 2}}{{t + 1}}} dt\).
Evaluate the Integral: \(\int {{{\cot }^5}\theta {{\sin }^4}} \theta d\theta \)
Evaluate the Integral: \(\int\limits_0^\pi {{{\cos }^6}\theta } d\theta \)
Evaluate the integral\(\)\(\int {\frac{{{\mathop{\rm Cos}\nolimits} x}}{{{{{\mathop{\rm Sin}\nolimits} }^2}x - 9}}} .dx\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.