Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the integral\(\int_{\rm{0}}^{{\rm{1/2}}} {\frac{{{\rm{x}}{{\rm{e}}^{{\rm{2x}}}}}}{{{{{\rm{(1 + 2x)}}}^{\rm{2}}}}}} {\rm{dx}}\).

Short Answer

Expert verified

The integral value of the given equation is\(\int_{\rm{0}}^{{\rm{1/2}}} {\frac{{{\rm{x}}{{\rm{e}}^{{\rm{2x}}}}}}{{{{{\rm{(1 + 2x)}}}^{\rm{2}}}}}} {\rm{dx = }}\frac{{\rm{e}}}{{\rm{8}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{4}}}\).

Step by step solution

01

Expand the equation.

Integrate pieces with each other.

\(\begin{aligned}{c}{\rm{u = x}}{{\rm{e}}^{{\rm{2x}}}}\\{\rm{du = }}\left( {{\rm{(1)}}{{\rm{e}}^{{\rm{2x}}}}{\rm{ + x}}{{\rm{e}}^{{\rm{2x}}}}{\rm{(2)}}} \right)\\{\rm{dx = }}{{\rm{e}}^{{\rm{2x}}}}{\rm{(1 + 2x)dx}}\\\;{\rm{v = ( - 1)}}\frac{{\rm{1}}}{{\rm{2}}}{{\rm{(1 + 2x)}}^{{\rm{ - 1}}}}\\{\rm{ = }}\frac{{{\rm{ - 1}}}}{{{\rm{2(1 + 2x)}}}}\\{\rm{dv = (1 + 2x}}{{\rm{)}}^{{\rm{ - 2}}}}{\rm{dx}}\;\;\end{aligned}\)

02

Evaluate the equation.

\(\begin{aligned}{c}\int_{\rm{0}}^{{\rm{1/2}}} {\frac{{{\rm{x}}{{\rm{e}}^{{\rm{2x}}}}}}{{{{{\rm{(1 + 2x)}}}^{\rm{2}}}}}} {\rm{dx = uv - }}\int {\rm{v}} {\rm{du}}\\{\rm{ = }}\left( {{\rm{x}}{{\rm{e}}^{{\rm{2x}}}}{\rm{ \times }}\frac{{{\rm{ - 1}}}}{{{\rm{2(1 + 2x)}}}}} \right)_{\rm{0}}^{{\rm{1/2}}}{\rm{ - }}\int_{\rm{0}}^{{\rm{1/2}}} {\frac{{{\rm{ - 1}}}}{{{\rm{2(1 + 2x)}}}}} {\rm{ \times }}{{\rm{e}}^{{\rm{2x}}}}{\rm{(1 + 2x)dx}}\\{\rm{ = }}\left( {\frac{{\rm{1}}}{{\rm{2}}}{{\rm{e}}^{{\rm{2(1/2)}}}}{\rm{ \times }}\frac{{{\rm{ - 1}}}}{{{\rm{2(1 + 2(1/2))}}}}{\rm{ - 0}}} \right){\rm{ + }}\frac{{\rm{1}}}{{\rm{2}}}\int_{\rm{0}}^{{\rm{1/2}}} {{{\rm{e}}^{{\rm{2x}}}}} {\rm{dx}}\\{\rm{ = }}\left( {{\rm{ - }}\frac{{\rm{e}}}{{\rm{8}}}} \right){\rm{ + }}\frac{{\rm{1}}}{{\rm{2}}}\left( {\frac{{\rm{1}}}{{\rm{2}}}{{\rm{e}}^{{\rm{2x}}}}} \right)_{\rm{0}}^{{\rm{1/2}}}\\{\rm{ = - }}\frac{{\rm{e}}}{{\rm{8}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\left( {{{\rm{e}}^{{\rm{2(1/2)}}}}{\rm{ - }}{{\rm{e}}^{\rm{0}}}} \right)\\{\rm{ = - }}\frac{{\rm{e}}}{{\rm{8}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{(e - 1)}}\\{\rm{ = - }}\frac{{\rm{e}}}{{\rm{8}}}{\rm{ + }}\frac{{\rm{e}}}{{\rm{4}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{4}}}\\{\rm{ = - }}\frac{{\rm{e}}}{{\rm{8}}}{\rm{ + }}\frac{{{\rm{2e}}}}{{\rm{8}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{4}}}\\{\rm{ = }}\frac{{\rm{e}}}{{\rm{8}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{4}}}\end{aligned}\)

Therefore, the integral value of the given equation is\(\int_{\rm{0}}^{{\rm{1/2}}} {\frac{{{\rm{x}}{{\rm{e}}^{{\rm{2x}}}}}}{{{{{\rm{(1 + 2x)}}}^{\rm{2}}}}}} {\rm{dx = }}\frac{{\rm{e}}}{{\rm{8}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{4}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free