Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the integral using the indicated trigonometric substitution. Sketch and label the associated right triangle.\(\)

\(\int {\frac{{dx}}{{{x^2}\sqrt {4 - {x^2}} }},x = 2sin\theta } \)

Short Answer

Expert verified

The integration \(\int {\frac{{dx}}{{{x^2}\sqrt {4 - {x^2}} }}} \) after substituting \(x = 2sin\theta \) is \( - \frac{1}{{4x}}\sqrt {4 - {x^2}} + c\), and the right-angled triangle will be

Step by step solution

01

Substituting \(x = 2sin\theta \) in the integration.

\(\int {\frac{{dx}}{{{x^2}\sqrt {4 - {x^2}} }}} \,\,.....\left( 1 \right)\)

And we have to substitute.

\(x = 2sin\theta \,\,\,....\left( 2 \right)\)

Differentiating both sides with respect to x.

\(\begin{aligned}{l}\frac{d}{{dx}}.x &= \frac{d}{{dx}}\left( {2sin\theta } \right)\\1 &= 2\frac{d}{{dx}}sin\theta \\1 &= 2\,cos\theta .\frac{{d\theta }}{{dx}}\\dx &= 2\,cos.d\theta \end{aligned}\)

02

Putting the value of \(x\) and \(dx\) in 1, we have

\(\int {\frac{{2cos\theta \,d\theta }}{{{{\left( {2sin\theta } \right)}^2}\sqrt {4 - {{\left( {2sin\theta } \right)}^2}} }}} \)

\(\begin{aligned}{l} &= \int {\frac{{2cos\theta \,d\theta }}{{4si{n^2}\theta \sqrt {4 - 4si{n^2}\theta } }}} \\ &= \int {\frac{{2cos\theta \,d\theta }}{{4si{n^2}\theta \,\,2\sqrt {1 - si{n^2}\theta } }}} \\ &= \int {\frac{{cos\theta .d\theta }}{{4si{n^2}\theta .cos\theta }}} \\ &= \frac{1}{4}\int {\frac{{d\theta }}{{si{n^2}\theta }}} \\ &= \frac{1}{4}\int {cose{c^2}\theta \,\,d\theta } \\ &= \frac{1}{4}\left( { - cot\theta } \right) + c\end{aligned}\)

03

Finding the sides of the triangle.

So, \( = \frac{1}{4}\left( { - cot\theta } \right) + c\)

But, \(x = 2 sin\theta \)

So, \(sin\theta = \frac{x}{2}\)

And

\(\begin{aligned}{l}cot\,\theta &= \frac{{\sqrt {1 - si{n^2}\theta } }}{{sin\theta }}\\ &= \frac{{\sqrt {1 - \frac{{{x^2}}}{4}} }}{{\frac{x}{2}}}\\ &= \frac{{\sqrt {4 - {x^2}} }}{x}\end{aligned}\)

So, \( - \frac{1}{4}cot\theta + c\)

\( - \frac{1}{4}\frac{{\sqrt {4 - {x^2}} }}{x} + c\)

Now, \(sin\,\theta = \frac{{perpendicular}}{{hypoteneus}}\)

And also \(sin \theta = \frac{x}{2}\)

So, \(p = x,h = 2\) and

By Pythagoras theorem,

\(\begin{aligned}{l}{b^2} + {p^2} &= {h^2}\\{b^2} + {x^2} &= {\left( 2 \right)^2}\\{b^2} &= 4 - {x^2}\\b &= \sqrt {4 - {x^2}} \end{aligned}\)

04

Building right angle triangle.

Since, \(h = 2, p = x\,\,and b = \sqrt {4 - {x^2}} \)

So, the triangle will be

Hence, the integration \(\int {\frac{{dx}}{{{x^2}\sqrt {4 - {x^2}} }}} \) after substituting \(x = 2 sin\theta \) will be \( - \frac{1}{4}\frac{{\sqrt {4 - {x^2}} }}{x} + c\)and the triangle will be

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free