Chapter 6: Q38E (page 326)
- Use the formula for \(sin\left( {A + B} \right)\) and \(sin\left( {A - B} \right)\) to show that\(sinA\,\,\cos B = \frac{1}{2}\left( {\sin \left( {A - B} \right) - sin\left( {A + B} \right)} \right)\).
- Use the formula for \(sin\left( {A + B} \right)\) and \(sin\left( {A - B} \right)\) to show that\(sinA\,\,\cos B = \frac{1}{2}\left( {\sin \left( {A - B} \right) - sin\left( {A + B} \right)} \right)\).
Short Answer
\(sinA\,\cos B = \frac{1}{2}\left( {\sin \left( {A - B} \right) + sin\left( {A + B} \right)} \right)\)
The formula for,
\(\begin{aligned}{l}sin\left( {A + B} \right) = sinAcosB - cosAsinB\\sin\left( {A - B} \right) = sinAcosB + cosAsinB\end{aligned}\)
We have to show,
\(sinA\,cosB = \frac{1}{2}\left( {sin\left( {A - B} \right) - sin\left( {A + B} \right)} \right)\)