Chapter 6: Q37E (page 326)
- Use the formula for \(cos\left( {A + B} \right)\) and \(cos\left( {A - B} \right)\) to show that \(sinA\,sinB = \frac{1}{2}\left( {cos\left( {A - B} \right) - cos\left( {A + B} \right)} \right)\).
- Use the formula for \(cos\left( {A + B} \right)\) and \(cos\left( {A - B} \right)\) to show that \(sinA\,sinB = \frac{1}{2}\left( {cos\left( {A - B} \right) - cos\left( {A + B} \right)} \right)\).
Short Answer
\(sinA\,sinB = \frac{1}{2}\left( {cos\left( {A - B} \right) - cos\left( {A + B} \right)} \right)\)