Evaluating \(\int {{{\tan }^{n - 2}}} x{\sec ^2}xdx\)
Let \(\tan x = t\)
Differentiating with respect to ‘x’
\({\sec ^2}x = \frac{{dt}}{{dx}}\)
\(\therefore \int {{{\tan }^{n - 2}}} x{\sec ^2}xdx = \int {{t^{n - 2}}} dt\)
=\( = \frac{{{t^{n - 2 + 1}}}}{{n - 2 + 1}}\)
\( \Rightarrow \int {{{\tan }^{n - 2}}} x{\sec ^2}xdx = \frac{{{t^{n - 1}}}}{{n - 1}}\)
Replace t by \(\tan x\)
Substitute this value in Equation (1)
Replace \({I_n}\) by \(\int {{{\tan }^n}} xdx\) and \({I_{n - 2}}\) by\(\int {{{\tan }^{n - 2}}} xdx\)
Hence proved
The answer is \(\int {{{\tan }^n}} xdx = \frac{{{{\tan }^{n - 1}}x}}{{n - 1}} - \int {{{\tan }^{n - 2}}} xdx\)