Let, \(u = \sqrt(3){x}\) \(du3{u^3} = dx\)
\({u^3} = x\) \(3{u^2}du = dx\)
The limits are \(x \to 0\)to 1 implies, \(u \to 0\)to 1
Rewrite the integral as \(\int\limits_0^1 {\frac{1}{{1 + \sqrt(3){x}}}} dx = 3\int\limits_0^1 {\frac{{{u^2}}}{{1 + u}}du} \)
Apply the long division to obtain the partial fraction as shown below:-
\(\begin{array}{l}u + 1\sqrt {{u^2}} \\\end{array}\)
This implies, \({u^2} = u\left( {u + 1} \right) - u\)
Substitute in the integral
\(\int\limits_0^1 {\frac{1}{{1 + \sqrt(3){x}}}dx = 3\int\limits_0^1 {\frac{{u\left( {u + 1} \right) - u}}{{u + 1}}} } du\)
=\(3\int\limits_0^1 {(\frac{{u\left( {u + 1} \right)}}{{\left( {u + 1} \right)}}} - \frac{u}{{u + 1}})du\)
=\(3\int\limits_0^1 {\left( {u - \frac{{u + 1 - 1}}{{u + 1}}} \right)} du\)