Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the Integral

\(\int {\frac{{dx}}{{cosx - 1}}} \)\(\)

Short Answer

Expert verified

\(\int {\frac{{dx}}{{cosx - 1}}} = - \left( {cosec\,x + cotx} \right) + c\)

When we divide the numerator and denominator by\(\left( {cosx + 1} \right)\), we get the form of\({a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\).so,\(co{s^2}x - 1 = si{n^2}x\).

Then divide both numerator and denominator by\(si{n^2}x\)to simplify the integral.

Step by step solution

01

Step 1:

\(\begin{aligned}{l}I &= \int {\frac{{dx}}{{cosx - 1}}} \\I &= \int {\frac{{\left( {cosx + 1} \right)}}{{\left( {cosx - 1} \right)\left( {cosx + 1} \right)}}dx} \\I &= \int {\frac{{\left( {cosx + 1} \right)}}{{\left( {co{s^2}x - 1} \right)}}dx} \end{aligned}\)

02

We know,\(1 + si{n^2}x = co{s^2}x\)

So, \(co{s^2}x - 1 = si{n^2}x\)

Substituting \(co{s^2}x - 1 = si{n^2}x\) in \(I\)

\(I = \int {\frac{{\left( {cosx + 1} \right)}}{{si{n^2}x}}} dx\)

03

Divide both numerator and denominator by \(si{n^2}x\).

\(\begin{aligned}{l}I &= \int {\left( {\frac{{cosx}}{{si{n^2}x}} + \frac{1}{{si{n^2}x}}} \right)} dx\\I &= \int {\frac{{cosx}}{{si{n^2}x}}dx} + \int {\frac{1}{{si{n^2}x}}} dx\end{aligned}\)

04

We can write \(\frac{{cosx}}{{si{n^2}x}}\) as \(\frac{{cosx}}{{sinx \times sinx}}\),\(\frac{{cosx}}{{sinx}} = cotx\) and \(\frac{1}{{sinx}} = cosecx\).

Therefore, it becomes \(cotx.cosecx\)

Also, we can write \(\frac{1}{{si{n^2}x}} = cose{c^2}x\)

\(I = \int {cotx\,cosecx\,dx + \int {cose{c^2}x\,dx} } \)

05

We know the integration of \(cose{c^2}x =  - cotx\) and integration of\(cotx\,cosecx =  - cosecx\).

\(\begin{aligned}{l}I &= - cosecx - cotx + c\\I &= - \left( {cosecx + cotx} \right) + c\end{aligned}\)

Hence, \(I = \int {\frac{{dx}}{{cosx - 1}} = } - \left( {cosecx + cotx} \right) + c\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free