Chapter 6: Q35E (page 317)
use integration by parts to prove the reduction formula:\{\int {{{\left( {lnx} \right)}^n}} dx = x{\left( {lnx} \right)^n} - n\int {{{\left( {lnx} \right)}^{n - 1}}} dx\)
Short Answer
We can prove the following reduction formula by using integration by parts:
\{\int {{{\left( {\ln x} \right)}^n}dx = x{{\left( {\ln x} \right)}^n} - n} \int {{{\left( {\ln x} \right)}^{n - 1}}dx} \)