= \(\int\limits_9^{16} {\frac{{\sqrt x }}{{x - 4}}dx} = \int\limits_3^4 {\frac{{2{u^2}}}{{{u^2} + 4}}} du\)=\(2\int\limits_3^4 {1 + \frac{4}{{\left( {u + 2} \right)\left( {u - 2} \right)}}du} \)
= \(2\int\limits_3^4 {1 + \frac{4}{{\left( {u + 2} \right)\left( {u - 2} \right)}}du} \) ( from equation (3))
=\(2(u + \ln \left( {u - 2} \right) - \ln \left( {u + 2} \right))_3^4\) \(\left( {\int {\frac{{{f^'}\left( x \right)}}{{f\left( x \right)}}} } \right)dx = \ln \left( {f\left( x \right)} \right) + c\))
= \(2(u + \ln \frac{{\left( {u - 2} \right)}}{{\left( {u + 2} \right)}})_3^4\) \(\left( {\ln \frac{a}{b} = \ln a - \ln b} \right)\)
= \(2(4 + \ln \frac{2}{6} - 3 - \ln \frac{1}{5})\)
=\(8 + 2\ln \frac{1}{3} - 6 - 2\ln \frac{1}{5} = 2 + 2\ln \frac{5}{3}\)
=\(2 + 2\ln {(\frac{5}{3})^2} = 2 + \ln \left( {\frac{{25}}{9}} \right)\)
Hence, the value of the given integral is given below:
\(\int\limits_9^{16} {\frac{{\sqrt x }}{{x - 4}}dx} = 2 + \ln \left( {\frac{{25}}{9}} \right)\)