Chapter 6: Q34E (page 326)
Evaluate the Integral\(\int {\frac{{1 - ta{n^2}x}}{{se{c^2}x}}dx} \)\(\)
Short Answer
\(\int {\frac{{1 - {{\tan }^2}x}}{{{{\sec }^2}x}}dx} = \frac{1}{2}\sin 2x + c\)
Using the formula\(1 + ta{n^2}x = se{c^2}x\), substitute the value of\(ta{n^2}x\)in the question. Using another identity,\(co{s^2}x = \frac{{1 + cos2x}}{2}\), the integral gets much simpler to solve.