\(\begin{aligned}{c}{\rm{sint = }}\frac{{\rm{x}}}{{\rm{2}}} \to {\rm{t = si}}{{\rm{n}}^{{\rm{ - 1}}}}\left( {\frac{{\rm{x}}}{{\rm{2}}}} \right) \to {\rm{tant}}\\{\rm{ = }}\frac{{\rm{x}}}{{\sqrt {{\rm{4 - }}{{\rm{x}}^{\rm{2}}}} }}{\rm{I}}\\{\rm{ = }}\frac{{\rm{x}}}{{\sqrt {{\rm{4 - }}{{\rm{x}}^{\rm{2}}}} }}{\rm{ - si}}{{\rm{n}}^{{\rm{ - 1}}}}\left( {\frac{{\rm{x}}}{{\rm{2}}}} \right){\rm{ + c}}\\\int {\frac{{{{\rm{x}}^{\rm{2}}}}}{{{{\left( {{\rm{4 - }}{{\rm{x}}^{\rm{2}}}} \right)}^{{\rm{3/2}}}}}}} {\rm{dx = }}\frac{{\rm{x}}}{{\sqrt {{\rm{4 - }}{{\rm{x}}^{\rm{2}}}} }}{\rm{ - si}}{{\rm{n}}^{{\rm{ - 1}}}}\left( {\frac{{\rm{x}}}{{\rm{2}}}} \right){\rm{ + c}}\end{aligned}\)
Therefore, the integral value of the given equation is\(\int {\frac{{{{\rm{x}}^{\rm{2}}}}}{{{{\left( {{\rm{4 - }}{{\rm{x}}^{\rm{2}}}} \right)}^{{\rm{3/2}}}}}}} {\rm{dx = }}\frac{{\rm{x}}}{{\sqrt {{\rm{4 - }}{{\rm{x}}^{\rm{2}}}} }}{\rm{ - si}}{{\rm{n}}^{{\rm{ - 1}}}}\left( {\frac{{\rm{x}}}{{\rm{2}}}} \right){\rm{ + c}}\).