Chapter 6: Q33E (page 326)
Evaluate the Integral \(\int {cosec\,x\,dx} \)
Short Answer
Expert verified
Hence we get\(\int {cosec\,x\,dx} = log\left| {cosec\,x - cot\,x} \right| + c\)
Chapter 6: Q33E (page 326)
Evaluate the Integral \(\int {cosec\,x\,dx} \)
Hence we get\(\int {cosec\,x\,dx} = log\left| {cosec\,x - cot\,x} \right| + c\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the Integral: \(\int {{{\cot }^5}\theta {{\sin }^4}} \theta d\theta \)
Evaluate the integral \(\int\limits_0^{\frac{\pi }{2}} {{{\sin }^7}\theta {{\cos }^5}\theta d\theta } \).
\({\bf{1 - 40}}\)- Evaluate the integral.
\(\int_0^{\pi /2} {\sin } \theta {e^{\cos \theta }}d\theta \)
Integration of \(\int\limits_0^\pi {co{s^4}(2t)dt} \)
Evaluate the integral: \(\int {\frac{{axdx}}{{{x^2} - bx}}} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.