Chapter 6: Q32E (page 334)
Evaluate the integral
\(I = \int {\frac{{{x^4} + 3{x^2} + 1}}{{{x^5} + 5{x^3} + 5x}}dx} \)
Short Answer
Multiply numerator and dominator by 5 to get your answer in simple substitution
Chapter 6: Q32E (page 334)
Evaluate the integral
\(I = \int {\frac{{{x^4} + 3{x^2} + 1}}{{{x^5} + 5{x^3} + 5x}}dx} \)
Multiply numerator and dominator by 5 to get your answer in simple substitution
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral:\(\int {\frac{y}{{(y + 4)(2y - 1)}}} dy\).
Evaluate the integral \(\int\limits_0^{\frac{\pi }{2}} {{{\sin }^7}\theta {{\cos }^5}\theta d\theta } \).
Evaluate the Integral \(\begin{aligned}{l}\int {\sqrt {{e^{2x}} - 1} dx} \\\end{aligned}\)
Evaluate the Integral \(\int {\frac{{{e^x}}}{{3 - {e^{2x}}}}dx} \).
Try to evaluate\(\int {(1 + \ln x)} \sqrt {1 + {{(x\ln x)}^2}} dx\)with a computer algebra system. If it doesn't return an answer, make a substitution that changes the integral into one that the CAS can evaluate
What do you think about this solution?
We value your feedback to improve our textbook solutions.