Chapter 6: Q32E (page 316)
a) Prove the reduction formula \(\)\(\int {{{\cos }^n}xdx = \frac{1}{n}{{\cos }^{n - 1}}x\sin x + \frac{{n - 1}}{n}\int {{{\cos }^{n - 2}}xdx} } \)
b)Use part a) to evaluate \(\int {{{\cos }^2}xdx} \)
c) Use parts a) and b) to evaluate \(\int {{{\cos }^4}xdx} \)
Short Answer
We should use the substitution method to prove the integral
Let’s take \(\begin{aligned}{l}\mu = {\cos ^{n - 1}}x\\dv = \cos xdx\end{aligned}\)