Apply the strategy for evaluating the integral function if \(m\), is odd as follows:
If the power if sine is odd \({\rm{(n = 2 k + 1)}}\), save one sine factor and use \({\sin ^2}x = 1 - {\cos ^2}x\)to express the remaining factor in terms of cosine.
\(\begin{array}{l}\int {{{\sin }^{2k + 1}}} x{\cos ^n}xdx = \int {{{\left( {{{\sin }^2}x} \right)}^k}} {\cos ^n}x\sin xdx\\ = \int {{{\left( {1 - {{\cos }^2}x} \right)}^k}} {\cos ^n}x\sin xdx\end{array}\)
Then substitute \(u = \cos x\).
Apply the strategy for evaluating the integral function if \(n\)is odd as follows:
If the power of cosine is odd \({\rm{(n = 2 k + 1)}}\), save one cosine factor and use \({\cos ^2}x = 1 - {\sin ^2}x\)to express the remaining factors in terms of sine.
\(\begin{array}{l}\int {{{\sin }^m}} x{\cos ^{2k + 1}}xdx = \int {{{\sin }^m}} x{\left( {{{\cos }^2}x} \right)^k}\cos xdx\\ = \int {{{\sin }^m}} x{\left( {1 - {{\sin }^2}x} \right)^k}\cos xdx\end{array}\)
Then substitute \(u = \sin x\).