Chapter 6: Q2E (page 363)
\({\bf{1 - 40}}\)- Evaluate the integral.
\(\int_1^2 {\frac{x}{{{{(x + 1)}^2}}}} dx\)
Short Answer
\(\int_1^2 {\frac{x}{{{{(x + 1)}^2}}}} dx = \ln 3 - \ln 2 - \frac{1}{6}\)
Chapter 6: Q2E (page 363)
\({\bf{1 - 40}}\)- Evaluate the integral.
\(\int_1^2 {\frac{x}{{{{(x + 1)}^2}}}} dx\)
\(\int_1^2 {\frac{x}{{{{(x + 1)}^2}}}} dx = \ln 3 - \ln 2 - \frac{1}{6}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeUse a computer algebra system to evaluate the integral. Compare the answer with the result of using tables. If the answers are not the same, show that they are equivalent.
\(\int {\frac{1}{{\sqrt {1 + \sqrt(3){x}} }}} dx\)
Evaluate the integral:\(\int {\frac{{{x^2} + 1}}{{\leftEvaluate the integral:\(\int {\frac{{{x^2} + 1}}{{\left( {x - 3} \right){{\left( {x - 2} \right)}^2}}}} dx\)( {x - 3} \right){{\left( {x - 2} \right)}^2}}}} dx\)
Evaluate the integral\(\int {{{\tan }^2}} x\sec xdx\)
Evaluate the integral: \(\int {x{{\cos }^2}xdx} \)
Evaluate the integral\(\int {{{{\mathop{\rm Sin}\nolimits} }^6}2x.dx} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.