Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the integral\(\int_{{\rm{ - 3}}}^{\rm{3}} {\frac{{\rm{x}}}{{{\rm{1 + |x|}}}}} {\rm{dx}}\).

Short Answer

Expert verified

The integral value of the given equation is\(\int_{{\rm{ - 3}}}^{\rm{3}} {\frac{{\rm{x}}}{{{\rm{1 + |x|}}}}} {\rm{dx = 0}}\).

Step by step solution

01

Expand the equation.

02

Evaluate the equation.

\(\begin{aligned}{c}\int_{{\rm{ - 3}}}^{\rm{3}} {\frac{{\rm{x}}}{{{\rm{1 + |x|}}}}} {\rm{dx = ( - x - ln|1 - x|)}}_{{\rm{ - 3}}}^{\rm{0}}{\rm{ + (x - ln|1 + x|)}}_{\rm{0}}^{\rm{3}}\\{\rm{ = - ( - ( - 3) - ln|1 - ( - 3)|) + (3 - ln|1 + 3|)}}\\{\rm{ = - 3 + ln4 + 3 - ln4}}\\{\rm{ = 0}}\end{aligned}\)

Therefore, the integral value of the given equation is\(\int_{{\rm{ - 3}}}^{\rm{3}} {\frac{{\rm{x}}}{{{\rm{1 + |x|}}}}} {\rm{dx = 0}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free