Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the Equation \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {co{t^2}xdx} \)

Short Answer

Expert verified

First, convert \(co{t^2}x\) in terms of \(cosec x\) using trigonometric identities and solve the definite integral. Therefore , \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {co{t^2}xdx} = \sqrt 3 - \frac{\pi }{3}\).

Step by step solution

01

Converting \(co{t^2}x\) in \(cosec\,x\) using the trigonometric identity.

=\(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {co{t^2}xdx} \)

\( = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {\left( {cose{c^2}x - 1} \right)dx} \)

02

Applying linearity and solving the integral.

\( = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {\left( {cose{c^2}x - 1} \right)dx} \)

\( = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {cose{c^2}x\,dx} - \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {1\,dx} \)

\( = \left( { - cot\,x} \right)_{\frac{\pi }{6}}^{\frac{\pi }{2}} - \left( x \right)_{\frac{\pi }{6}}^{\frac{\pi }{2}}\)

03

Putting the limit.

\( = \left( { - cot\,\left( {\frac{\pi }{2}} \right) - \left( { - cot\left( {\frac{\pi }{6}} \right)} \right)} \right) - \left( {\frac{\pi }{2} - \frac{\pi }{6}} \right)\)

\( = \left( { - 0 - \left( {\sqrt 3 } \right)} \right) - \left( {\frac{{3\pi - \pi }}{6}} \right)\)

\( = \sqrt 3 - \frac{{2\pi }}{6}\)

\( = \sqrt 3 - \frac{\pi }{3}\)

Hence, \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {co{t^2}xdx} = \sqrt 3 - \frac{\pi }{3}\).

\(\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free