Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the integral\(\int {{t^3}{e^{ - {t^2}}}dt} \)`

Short Answer

Expert verified

We will use the substitute method and integral by parts method to solve the integral.

Step by step solution

01

Given Data

Given =\({\rm I} = \int {{t^3}{e^{ - {t^2}}}dt} \)

Let \(x = {t^2}\)

\(\begin{aligned}{l}\frac{{dx}}{{dt}} = 2tdt\\dt = \frac{{dx}}{{2t}}\end{aligned}\)

Substitute

\(\)\(\begin{aligned}{l}{\rm I} = \int {{t^3}{e^{ - {t^2}}}dt} \\{\rm I} = \int {x{e^{ - x}}\frac{{dx}}{2}} \\{\rm I} = \frac{1}{2}\int {x{e^{ - x}}dx} \end{aligned}\)

02

Using Integration by Part Method

\({\rm I} = \mu v - \int {vd\mu } \)

Let,\(\begin{aligned}{l}\mu = x\\d\mu = dx\end{aligned}\) \(\begin{aligned}{l}dv = {e^{ - x}}\\v = - {e^{ - x}}\end{aligned}\)

\(\begin{aligned}{l}{\rm I} = \frac{1}{2}\left( { - x{e^{ - x}} + \int {{e^{ - x}}dx} } \right)\\{\rm I} = \frac{1}{2}\left( { - x{e^{ - x}} - \frac{1}{2}{e^{ - x}} + {c_1}} \right)\\{\rm I} = \frac{1}{2}.x{e^{ - x}} - \frac{1}{2}{e^{ - x}} + \frac{{{c_1}}}{2}\\{\rm I} = - \frac{1}{2}{t^2}{e^{ - {t^2}}} - \frac{1}{2}{e^{ - {t^2}}} + c\\\therefore {\rm I} = - \frac{1}{2}{e^{ - {t^2}}}\left( {{t^2} + 1} \right) + c\end{aligned}\)

Hence, \(\int {{t^3}{e^{ - {t^2}}}dt} = - \frac{1}{2}{e^{ - {t^2}}}\left( {{t^2} + 1} \right) + c\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free