The limits of integration are:
If\(x = 0\)then\(\alpha = 2\)and if\(x = 1\)then\(\alpha = 3\)
So the above integral becomes,
\(\begin{array}{l}\int\limits_0^1 {\frac{x}{{{x^2} + 4x + 13}}} dx = \int\limits_0^1 {\left( {\frac{{x + 2}}{{{\alpha ^2} + 9}} - \frac{2}{{{\alpha ^2} + 9}}} \right)} dx\\ = \frac{1}{2}\int\limits_2^3 {\frac{{2x}}{{{\alpha ^2} + 9}}dx - 2\int\limits_2^3 {\frac{1}{{{\alpha ^2} + {3^2}}}} } dx\\\end{array}\)
Use, \(\begin{array}{l}\int {\frac{{{f^'}\left( x \right)}}{{f\left( x \right)}}} dx = \ln |\left( {f\left( x \right)} \right)| + c\& \int {\frac{{dx}}{{{x^2} + {a^2}}}} = \frac{1}{a}{\tan ^{ - 1}}\left( {\frac{x}{a}} \right) + c\\\therefore \int\limits_0^1 {\frac{x}{{{x^2} + 4x + 13}}} dx = \frac{1}{2}\left( {\ln |{\alpha ^2} + 9|} \right)_2^3 - 2\left( {\frac{1}{3}{{\tan }^{ - 1}}\frac{\alpha }{3}} \right)_2^3\end{array}\)