Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use a computer algebra system to evaluate the integral. Compare the answer with the result using tables. If the answer is not the same, show that they are equivalent.

\(\int {\cos e{c^5}xdx} \)

Short Answer

Expert verified

Using any computer algebra system,

\(\int {\cos e{c^5}xdx} = \frac{{\left( { - 3\ln \left( {1\cos ec\left( x \right) + \cot \left( x \right)1} \right) + \cot \left( x \right)\cos ec\left. x \right)\left( {2\cos e{c^2}\left( x \right) + 3} \right)} \right)}}{8}\)

Step by step solution

01

using CAS we get  

\(\int {\cos e{c^5}xdx} = \frac{{\left( { - 3\ln \left( {1\cos ec\left( x \right) + \cot \left( x \right)1} \right) + \cot \left( x \right)\cos ec\left. x \right)\left( {2\cos e{c^2}\left( x \right) + 3} \right)} \right)}}{8}\)

\(\frac{{ - 3\ln \left( {1\cos ec\left( x \right) + \cot \left( x \right)1} \right) + \cot \left( x \right)\cos ec\left( x \right)\left( {2\cos e{c^2}\left( x \right) + 3} \right)}}{8}\)

02

Calculating using table:

I = \(\int {\cos e{c^5}xdx} = \frac{{\left( { - 3\ln \left( {1\cos ec\left( x \right) + \cot \left( x \right)1} \right) + \cot \left( x \right)\cos ec\left. x \right)\left( {2\cos e{c^2}\left( x \right) + 3} \right)} \right)}}{8}\)=\(\int {\cos e{c^3}x'\cos e{c^{^2}}xdx} \)

We know the formula ,

\(\int {\cos e{c^n}udu = \frac{{ - 1}}{{n - 1}}} \cot u\cos e{c^{n - 2}}u + \frac{{n - 2}}{{n - 1}}\int {\cos e{c^{n - 2}}} udu\)

\(\int {\cos e{c^5}xdx} = \frac{{\left( { - 3\ln \left( {1\cos ec\left( x \right) + \cot \left( x \right)1} \right) + \cot \left( x \right)\cos ec\left. x \right)\left( {2\cos e{c^2}\left( x \right) + 3} \right)} \right)}}{8}\)= \(\frac{{ - 1}}{4}\cot x\cos e{c^3}x + \frac{3}{4}\int {\cos e{c^3}xdx} \)

Using the table of integrals,

=\(\) \(\int {\cos e{c^3}udu = \frac{{ - 1}}{2}} \cos ecu\cot u + \frac{1}{2}\ln \left( {\cos ecu - \cot u} \right) + c\)

= \(\int {\cos e{c^5}xdx = \frac{{ - 1}}{4}} \cot x\cos e{c^3}x\frac{3}{4}\left( {\frac{{ - 1}}{2}\cos ecx + \frac{1}{2}\ln \backslash \cos ecx - \cot + c} \right)\)

= \(\frac{{ - 1}}{4}\cot x\cos e{c^3}\frac{{ - 3}}{8}\ln |\cos ec - \cot c| + c\)

We suspect that there are trigonometric identities that show these three answers are equivalent. Indeed,if we also any CAS to simplify these expressions they produce the same answer.

Hence, both answer are equivalent

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free