\(\begin{array}{l}\int {\frac{{x + 4}}{{{x^2} + 2x + 5}}} dx = \int {\left( {\frac{4}{{{\alpha ^2} + 4}} + \frac{3}{{{\alpha ^2} + 4}}} \right)} dx\\\int {\frac{{x + 4}}{{{x^2} + 2x + 5}}dx = \frac{1}{2}} \int {\frac{{2x}}{{{x^2} + {2^2}}}dx + 3\int {\frac{1}{{{x^2} + {2^2}}}} } dx\end{array}\)
Use,\(\int {\frac{1}{{{x^2} + {a^2}}}} = \frac{1}{a}{\tan ^{ - 1}}\left( {\frac{x}{a}} \right)with,a = 2,\int {\frac{{df}}{f}} = \ln \left( f \right)with,f = {\alpha ^2} + 4\)
Then the integralis simplified to,
\(\begin{array}{l}\int {\frac{{x + 4}}{{{x^2} + 2x + 5}}dx = \frac{1}{2}\ln |{x^2} + 4| + 3\frac{1}{2}} {\tan ^{ - 1}}\frac{x}{2} + c\\ = \frac{1}{2}\ln |{x^2} + 4| + \frac{3}{2}{\tan ^{ - 1}}\frac{{x + 1}}{2} + c\\\therefore \int {\frac{{x + 4}}{{{x^2} + 2x + 5}}dx = \frac{1}{2}\ln |{x^2} + 2x + 5| + \frac{3}{2}} {\tan ^{ - 1}}\frac{{x + 1}}{2} + c\end{array}\)
Hence the value of the given integral is
\(\int {\frac{{x + 4}}{{{x^2} + 2x + 5}}dx = \frac{1}{2}\ln |{x^2} + 2x + 5| + \frac{3}{2}} {\tan ^{ - 1}}\frac{{x + 1}}{2} + c\)
\(\)