\(\begin{array}{c}\therefore \frac{{{x^3} + {x^2} + 2x + 1}}{{\left( {{x^2} + 1} \right)\left( {{x^2} + 2} \right)}} = \frac{{Ax + B}}{{{x^2} + 1}} + \frac{{Cx + D}}{{{x^2} + 2}}\\\end{array}\)
Apply integration and substitute the values of A,B,C,D
\(\therefore \int {\frac{{{x^3} + {x^2} + 2x + 1}}{{\left( {{x^2} + 1} \right)\left( {{x^2} + 2} \right)}}} dx = \int {\left( {\frac{x}{{{x^2} + 1}} + \frac{1}{{{x^2} + 2}}} \right)} dx\)
Use,\(\int {\frac{{{F^'}\left( x \right)}}{{F\left( x \right)}}} dx = \ln |f\left( x \right)| + C\& \int {\frac{1}{{{x^2} + {a^2}}} = \frac{1}{a}} {\tan ^{ - 1}}\left( {\frac{x}{a}} \right) + c\)
\(\begin{array}{l}\therefore \int {\frac{{{x^3} + {x^2} + 2x + 1}}{{\left( {{x^2} + 1} \right)\left( {{x^2} + 2} \right)}}dx = \frac{1}{2}\int {\frac{{2x}}{{{x^2} + 1}}} } dx - \int {\frac{x}{{{x^2} + {{\left( {\sqrt 2 } \right)}^2}}}dx} \\\therefore \int {\frac{{{x^3} + {x^2} + 2x + 1}}{{\left( {{x^2} + 1} \right)\left( {{x^2} + 2} \right)}}dx = \frac{1}{2}\ln |{x^2} + 1| + \frac{1}{{\sqrt 2 }}} {\tan ^{ - 1}}\frac{x}{{\sqrt 2 }} + c\end{array}\)
Hence the value of the given integral is
\(\int {\frac{{{x^3} + {x^2} + 2x + 1}}{{\left( {{x^2} + 1} \right)\left( {{x^2} + 2} \right)}}dx = \frac{1}{2}\ln |{x^2} + 1| + \frac{1}{{\sqrt 2 }}} {\tan ^{ - 1}}\frac{x}{{\sqrt 2 }} + c\)
\(\)