Chapter 6: Q24E (page 316)
Evaluate the integral\(\int\limits_0^1 {\frac{{{r^3}}}{{\sqrt {4 + {r^2}} }}} dr\)
Short Answer
We will use themethod of substitution to solve the given integral
Chapter 6: Q24E (page 316)
Evaluate the integral\(\int\limits_0^1 {\frac{{{r^3}}}{{\sqrt {4 + {r^2}} }}} dr\)
We will use themethod of substitution to solve the given integral
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral\(\int {\frac{{\sqrt {2{y^2} - 3} }}{{{y^2}}}} dy\)
Evaluate the integral:\(\int\limits_0^1 {\frac{{2x + 3}}{{{{(x + 1)}^2}}}} \)
Evaluate the integral\(\int {\frac{{\ln (1 + \sqrt {x)} }}{{\sqrt x }}} .dx\)
Evaluate the integral \(\int\limits_0^{{\pi \mathord{\left/
{\vphantom {\pi 3}} \right.
\kern-\nulldelimiterspace} 3}} {{{\tan }^3}x\sec xdx} \)
Use a computer algebra system to evaluate the integral. Compare the answer with the result of using tables. If the answer is not the same, show that they are equivalent.
\(\;\;\int {{{\sec }^4}} xdx\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.