Chapter 6: Q21 (page 326)
Evaluate the integral\(\int {{{\tan }^4}} x{\sec ^6}xdx\)
Short Answer
The value of \(\int {{{\tan }^4}} x{\sec ^6}xdx\) is \(\frac{{{{\tan }^5}x}}{5} + \frac{{{{\tan }^7}x}}{7} + c\)
Chapter 6: Q21 (page 326)
Evaluate the integral\(\int {{{\tan }^4}} x{\sec ^6}xdx\)
The value of \(\int {{{\tan }^4}} x{\sec ^6}xdx\) is \(\frac{{{{\tan }^5}x}}{5} + \frac{{{{\tan }^7}x}}{7} + c\)
All the tools & learning materials you need for study success - in one app.
Get started for freeif f is a quadratic function such that \(f(0) = 1\) and \(\int {\frac{{f(x)}}{{{x^2}{{(x + 1)}^3}}}dx} \) is a rational function, find the value of \(f'(0)\)
Write out the form of partial fraction composition of the function. Do not determine the numerical values of the coefficients.
(a) \(\frac{{{t^6} + 1}}{{{t^6} + {t^3}}}\)
Evaluate the integral \(\int\limits_0^{{\pi \mathord{\left/
{\vphantom {\pi 3}} \right.
\kern-\nulldelimiterspace} 3}} {{{\tan }^3}x\sec xdx} \)
Evaluate the Integral: \(\int {{{\tan }^2}} \theta {\sec ^4}\theta d\theta \)
Evaluate the integral\(\int {\frac{{\ln (1 + \sqrt {x)} }}{{\sqrt x }}} .dx\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.