\(A + 2B = 1\)…… (1)
\( - 4A - 3B + 2C = - 5\) ….. (2)
\(C + 4A - 2B = 16\)…. (3)
From equation (1) & (3)
\(5A + C = 17\)….. (4)
\( \Rightarrow A = 1 - 2B\)….. (5)
Put value of equation (5) in equation (2) and (3)
\( - 4(1 - 2B) - 3B + 2C = - 5\) \(C + 4(1 - 2B) - 2B = 16\)
\( - 4 + 8B - 3B + 2C = - 5\) \(C + 4 - 8B - 2B = 16\)
\(5B + 2C = - 1\)………(6) \(C - 10B = 12\) ……(7)
From equation (7) and (6), we can write
\(5B + 2\left( {12 + 10B} \right) = - 1\)
\(5B + 24 + 20B = - 1\)
\(25B = - 25 \Rightarrow B = - 1\)
Substitute the value of B in equation (1) and (7)
\(A = 1 - 2\left( { - 1} \right) = 3\) \(C - 10\left( { - 1} \right) = 12\)
\(A = 3\) \(C = 2\)