Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the integral\(\int {\frac{{{\rm{dt}}}}{{{\rm{si}}{{\rm{n}}^{\rm{2}}}{\rm{t + cos2t}}}}} \).

Short Answer

Expert verified

The integral value of the given equation is\(\int {\frac{{{\rm{dt}}}}{{{\rm{si}}{{\rm{n}}^{\rm{2}}}{\rm{t + cos2t}}}}} {\rm{ = tant + C}}\).

Step by step solution

01

Expand the equation.

For the cosine of a double angle, use identity.

\({\rm{cos(2t) = co}}{{\rm{s}}^{\rm{2}}}{\rm{t - si}}{{\rm{n}}^{\rm{2}}}{\rm{t}}\)

So,

\(\begin{array}{c}\int {\frac{{{\rm{dt}}}}{{{\rm{si}}{{\rm{n}}^{\rm{2}}}{\rm{t + cos(2t)}}}}} {\rm{ = }}\int {\frac{{{\rm{dt}}}}{{{\rm{si}}{{\rm{n}}^{\rm{2}}}{\rm{t + co}}{{\rm{s}}^{\rm{2}}}{\rm{t - si}}{{\rm{n}}^{\rm{2}}}{\rm{t}}}}} \\{\rm{ = }}\int {\frac{{{\rm{dt}}}}{{{\rm{co}}{{\rm{s}}^{\rm{2}}}{\rm{t}}}}} \\{\rm{ = }}\int {{\rm{se}}{{\rm{c}}^{\rm{2}}}} {\rm{tdt}}\\{\rm{ = tant + C}}\end{array}\)

02

Final answer.

where the formula for the indefinite integral\({\rm{se}}{{\rm{c}}^{\rm{2}}}{\rm{t}}\)of was used in the last equality which is elementary integral.

Therefore, the integral value of the given equation is\(\int {\frac{{{\rm{dt}}}}{{{\rm{si}}{{\rm{n}}^{\rm{2}}}{\rm{t + cos2t}}}}} {\rm{ = tant + C}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free