Chapter 6: Q1E (page 363)
\({\bf{1 - 40}}\)- Evaluate the integral.
\(\int_1^2 {\frac{{{{(x + 1)}^2}}}{x}} dx\)
Short Answer
\(\int_1^2 {\frac{{{{(x + 1)}^2}}}{x}} dx = \frac{7}{2} + \ln 2\)
Chapter 6: Q1E (page 363)
\({\bf{1 - 40}}\)- Evaluate the integral.
\(\int_1^2 {\frac{{{{(x + 1)}^2}}}{x}} dx\)
\(\int_1^2 {\frac{{{{(x + 1)}^2}}}{x}} dx = \frac{7}{2} + \ln 2\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the Integral \(\int {\frac{{{x^4}dx}}{{\sqrt {{x^{10}} - 2} }}} \).
Evaluate the Equation\(\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {co{t^3}x\,dx} \)
Evaluate the integral: \(\int {x{{\cos }^2}xdx} \)
Write out the form of the partial fraction decomposition of the function (as in Example 6). Do not determine the numerical values of the coefficients.
(a)\(\frac{{{x^4} + 1}}{{{x^3} + 4{x^3}}}\)
Evaluate the integral: \(\int\limits_1^2 {\frac{{4{y^2} - 7y - 12}}{{y(y + 2)(y - 3)}}dy} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.