Chapter 6: Q19E (page 340)
Evaluate the Integral \(\int\limits_0^1 {{x^4}{e^{ - 4}}dx} \)
Short Answer
The value of the integral is \(24 - \frac{{65}}{e}\)
Chapter 6: Q19E (page 340)
Evaluate the Integral \(\int\limits_0^1 {{x^4}{e^{ - 4}}dx} \)
The value of the integral is \(24 - \frac{{65}}{e}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral\(\)\(\int {{{{\mathop{\rm Sin}\nolimits} }^2}x*{\mathop{\rm Cos}\nolimits} x*\ln ({\mathop{\rm Sin}\nolimits} x)dx} \)
Evaluate the integral: \(\int\limits_1^2 {\frac{{4{y^2} - 7y - 12}}{{y(y + 2)(y - 3)}}dy} \)
Write out the form of the partial fraction decomposition of the function (as in Example 6). Do not determine the numerical values of the coefficients.
(a)
\(\frac{{{x^4} - 2{x^3} + {x^2} + 2x - 1}}{{{x^2} - 2x + 1}}\)
(b)
\(\frac{{{x^2} - 1}}{{{x^3} + {x^2} + x}}\)
Use a computer algebra system to evaluate the integral. Compare the answer with the result of using tables. If the answers are not the same, show that they are equivalent.
\(\int {\frac{1}{{\sqrt {1 + \sqrt(3){x}} }}} dx\)
Using the table of integral on reference page no:6-10,evaluate the integral.
\(\begin{aligned}{l}\int\limits_0^2 {{x^2}} \sqrt {4 - {x^2}} .dx\\\end{aligned}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.