Decompose the partial fractions. Because is a repeating factor, you must write a fraction for each time it occurs\({\rm{(2t)}}\). The repeating factor is used as the numerator for each of those fractions\({\rm{x}}\). As a result, they're essentially constants with a numerator. would not be like.
\(\begin{aligned}{l}\frac{{{{\rm{x}}^{\rm{2}}}{\rm{ + 8x - 3}}}}{{{{\rm{x}}^{\rm{3}}}{\rm{ + 3}}{{\rm{x}}^{\rm{2}}}}}\\{\rm{ = }}\frac{{{{\rm{x}}^{\rm{2}}}{\rm{ + 8x - 3}}}}{{{{\rm{x}}^{\rm{2}}}{\rm{(x + 3)}}}}\\{\rm{ = }}\frac{{\rm{A}}}{{\rm{x}}}{\rm{ + }}\frac{{\rm{B}}}{{{{\rm{x}}^{\rm{2}}}}}{\rm{ + }}\frac{{\rm{C}}}{{{\rm{x + 3}}}}\end{aligned}\)
Multiply both sides of the equation by a factor of two\({{\rm{x}}^{\rm{2}}}{\rm{(x + 3)}}\)
\({{\rm{x}}^{\rm{2}}}{\rm{ + 8x - 3 = Ax(x + 3) + B(x + 3) + C}}{{\rm{x}}^{\rm{2}}}{\rm{ - - - - - - - - - - - - - - - (1)}}\)
If\({\rm{x = 0}}\)
\(\begin{aligned}{c}{\rm{0 + 0 - 3 = 0 + B(0 + 3) + 0}}\\{\rm{ - 3 = 3 B}}\\{\rm{B = - 1}}\end{aligned}\)
If\({\rm{x = - 3}}\)
\(\begin{aligned}{c}{\rm{9 - 24 - 3 = 0 + 0 + C(9)}}\\{\rm{ - 18 = 9 C}}\\{\rm{C = - 2}}\end{aligned}\)