Chapter 6: Q18E (page 340)
Evaluate the Integral \(\int\limits_0^1 {{x^4}{e^{ - 4}}dx} \)
Short Answer
The value of the integral is \(24 - \frac{{65}}{e}\)
Chapter 6: Q18E (page 340)
Evaluate the Integral \(\int\limits_0^1 {{x^4}{e^{ - 4}}dx} \)
The value of the integral is \(24 - \frac{{65}}{e}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral \(\int {{{\sin }^3}\theta {{\cos }^4}} \theta d\theta \)
Evaluate the integral:\(\int {\frac{{{x^2} + 1}}{{\leftEvaluate the integral:\(\int {\frac{{{x^2} + 1}}{{\left( {x - 3} \right){{\left( {x - 2} \right)}^2}}}} dx\)( {x - 3} \right){{\left( {x - 2} \right)}^2}}}} dx\)
Evaluate the integral\(\int\limits_0^{{\pi \mathord{\left/
{\vphantom {\pi 4}} \right.
\kern-\nulldelimiterspace} 4}} {{{\sec }^4}\theta {{\tan }^4}\theta d\theta } \)
Write out the form of partial fraction composition of the function. Do not determine the numerical values of the coefficients.
(a) \(\frac{{{t^6} + 1}}{{{t^6} + {t^3}}}\)
Write out the form of the partial fraction decomposition of the function (as in Example 6). Do not determine the numerical values of the coefficients.
(a)\(\frac{{{x^4} + 1}}{{{x^3} + 4{x^3}}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.