Chapter 6: Q17E (page 363)
Evaluate the integral\(\int {\rm{x}} {\rm{ sec x tan xdx}}\).
Short Answer
The integral value of the given equation is\(\int {\rm{x}} {\rm{secxtanxdx = xsecx - ln|tanx + secx| + c}}\).
Chapter 6: Q17E (page 363)
Evaluate the integral\(\int {\rm{x}} {\rm{ sec x tan xdx}}\).
The integral value of the given equation is\(\int {\rm{x}} {\rm{secxtanxdx = xsecx - ln|tanx + secx| + c}}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral:\(\int {\frac{y}{{(y + 4)(2y - 1)}}} dy\).
Evaluate the integral \(\int {{{\sin }^3}\theta {{\cos }^4}} \theta d\theta \)
Evaluate the integral\(\)\(\int {{{{\mathop{\rm Sin}\nolimits} }^2}x*{\mathop{\rm Cos}\nolimits} x*\ln ({\mathop{\rm Sin}\nolimits} x)dx} \)
Evaluate the integral \(\int\limits_0^{{\raise0.7ex\hbox{\(\pi \)} \!\mathord{\left/
{\vphantom {\pi 2}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{\(2\)}}} {{{\sin }^5}xdx} \)
Evaluate the integral\(\)\(\int {\frac{{{\mathop{\rm Cos}\nolimits} x}}{{{{{\mathop{\rm Sin}\nolimits} }^2}x - 9}}} .dx\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.