Chapter 6: Q17E (page 334)
Evaluate the integral: \(\int\limits_1^2 {\frac{{4{y^2} - 7y - 12}}{{y(y + 2)(y - 3)}}dy} \)
Short Answer
The solution of the given integralis as follows:
\(\frac{{g\ln (4) + 10\ln (2) - \ln (39366)}}{5} + c\)
Chapter 6: Q17E (page 334)
Evaluate the integral: \(\int\limits_1^2 {\frac{{4{y^2} - 7y - 12}}{{y(y + 2)(y - 3)}}dy} \)
The solution of the given integralis as follows:
\(\frac{{g\ln (4) + 10\ln (2) - \ln (39366)}}{5} + c\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the Integral\(\int {{e^t}\sin \left( {\alpha t - 3} \right)dt} \)
Evaluate the integral \(\int\limits_0^{{\raise0.7ex\hbox{\(\pi \)} \!\mathord{\left/
{\vphantom {\pi 2}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{\(2\)}}} {{{\sin }^5}xdx} \)
Evaluate the Integral \(\int {\frac{{{x^4}dx}}{{\sqrt {{x^{10}} - 2} }}} \).
Integration \(\int\limits_0^{2\pi } {si{n^2}\left( {\frac{\theta }{3}} \right)} d\theta \).
Evaluate the integral: \(\int {xta{n^{ - 1}}xdx} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.