Chapter 6: Q16E (page 334)
Evaluate the integral:\(\int\limits_0^1 {\frac{{{x^3} - 4x - 10}}{{{x^2} - x - 6}}} dx\)
Short Answer
Hence, the value of the integral is \(\frac{{ - 1}}{5}\log \left( {\frac{{{3^{17}}}}{{{2^{18}}}}} \right)\)
Chapter 6: Q16E (page 334)
Evaluate the integral:\(\int\limits_0^1 {\frac{{{x^3} - 4x - 10}}{{{x^2} - x - 6}}} dx\)
Hence, the value of the integral is \(\frac{{ - 1}}{5}\log \left( {\frac{{{3^{17}}}}{{{2^{18}}}}} \right)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral: \(\int {\tan x{{\sec }^3}xdx} \).
\({\bf{1 - 40}}\)- Evaluate the integral.
\(\int_1^2 {\frac{x}{{{{(x + 1)}^2}}}} dx\)
Use a computer algebra system to evaluate the integral. Compare the answer with the result of using tables. If the answers are not the same, show that they are equivalent.
\(\int {{{\tan }^5}} xdx\)
Evaluate the integral\(\)\(\int {\frac{{{\mathop{\rm Cos}\nolimits} x}}{{{{{\mathop{\rm Sin}\nolimits} }^2}x - 9}}} .dx\)
Evaluate the integral:\(\int {\frac{y}{{(y + 4)(2y - 1)}}} dy\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.