Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the Integral \(\int {\frac{{{e^x}}}{{3 - {e^{2x}}}}dx} \).

Short Answer

Expert verified

The value of the integral is \(\frac{1}{{2\sqrt 3 }}ln\left| {\frac{{{e^x} + \sqrt 3 }}{{{e^x} - \sqrt 3 }}} \right| + c\).

Substitute and then integrate it. After integration, again put \(t = {e^x}\)

Step by step solution

01

Substitute \({x^2} = t\).

Let \({e^x} = t\).

\({e^x}dx = dt\)

\(\int {\frac{{{e^x}}}{{3 - {e^{2x}}}}dx} = \int {\frac{{dt}}{{3 - {t^2}}}} \)

02

Evaluate the integral.

Using the formula, \(\int {\frac{{du}}{{{a^2} - {u^2}}} = \frac{1}{{2a}}ln\left| {\frac{{u + a}}{{u - a}}} \right| + c} \).

Hence, \(\int {\frac{{{e^x}}}{{3 - {e^{2x}}}}dx} = \frac{1}{{2\sqrt 3 }}ln\left| {\frac{{{e^x} + \sqrt 3 }}{{{e^x} - \sqrt 3 }}} \right| + c\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free