Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the Integral: \(\int {\frac{{1 - \sin x}}{{\cos x}}} dx\)

Short Answer

Expert verified

To evaluate the integral, we usethe following identities:\(\sec x = \frac{1}{{\cos x}}\)and\(\tan x = \frac{{\sin x}}{{\cos x}}\)

Followed by integration formulas

\( = \int {\frac{{1 - \sin x}}{{\cos x}}} dx = \ln |\sec x + \tan x| - \ln |\sec x| + c\)

Step by step solution

01

Separation of Denominator

Let\(I = \int {\frac{{1 - \sin x}}{{\cos x}}} dx\)

First,we willseparate the denominator

\(I = \int {(\frac{1}{{\cos x}}} - \frac{{\sin x}}{{\cos x}})dx\)

02

Splitting of Integrals

Now,Split this integralas:

\(I = \int {\frac{1}{{\cos x}}} dx - \int {\frac{{\sin x}}{{\cos x}}} dx\)

03

Using General Trigonometric Identities

As\(\sec x = \frac{1}{{\cos x}}\)and\(\tan x = \frac{{\sin x}}{{\cos x}}\)

\(I = \int {\sec xdx - \int {\tan xdx} } \)

\(I = \ln |\sec x + \tan x| - \ln |\sec x| + c\)

Hencethe value ofthe integral:\(\int {\frac{{1 - \sin x}}{{\cos x}}} dx\)is

\( = \ln |\sec x + \tan x| - \ln |\sec x| + c\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free