Chapter 6: Q14E (page 360)
\(5 - 32\)Determine whether each integral is convergent or divergent. Evaluate those that are convergent.
14. \(\int_{ - \infty }^\infty {{x^2}} {e^{ - {x^3}}}dx\)
Short Answer
Integral is divergent.
Chapter 6: Q14E (page 360)
\(5 - 32\)Determine whether each integral is convergent or divergent. Evaluate those that are convergent.
14. \(\int_{ - \infty }^\infty {{x^2}} {e^{ - {x^3}}}dx\)
Integral is divergent.
All the tools & learning materials you need for study success - in one app.
Get started for free\(\int\limits_0^{\frac{\pi }{2}} {co{s^2}\theta \,d\theta } \)To find the value of a given definite integral.
Verify the formula 31
Evaluate the integral\(\int {\frac{{\ln (1 + \sqrt {x)} }}{{\sqrt x }}} .dx\)
Evaluate the integral \(\int\limits_0^{\frac{\pi }{2}} {{{\sin }^7}\theta {{\cos }^5}\theta d\theta } \).
Evaluate the Integral: \(\int\limits_0^\pi {{{\cos }^6}\theta } d\theta \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.