\({{\rm{x}}^{\rm{3}}}{\rm{ + x = x}}\left( {{{\rm{x}}^{\rm{2}}}{\rm{ + 1}}} \right)\)
Partial fraction\({{\rm{x}}^{\rm{2}}}{\rm{ + 1}}\)decomposition is possible because is an irreducible quadratic polynomial with no real roots.
\(\frac{{\rm{1}}}{{{{\rm{x}}^{\rm{3}}}{\rm{ + x}}}}{\rm{ = }}\frac{{\rm{A}}}{{\rm{x}}}{\rm{ + }}\frac{{{\rm{Bx + C}}}}{{{{\rm{x}}^{\rm{2}}}{\rm{ + 1}}}}{\rm{.}}\)
Divide by the smallest common denominator\({{\rm{x}}^{\rm{3}}}{\rm{ + x}}\), we obtain
\(\begin{aligned}{c}{\rm{1 = A}}\left( {{{\rm{x}}^{\rm{2}}}{\rm{ + 1}}} \right){\rm{ + (Bx + C)x}}\\{\rm{1 = A}}{{\rm{x}}^{\rm{2}}}{\rm{ + A + B}}{{\rm{x}}^{\rm{2}}}{\rm{ + Cx}}\\{\rm{1 = (A + B)}}{{\rm{x}}^{\rm{2}}}{\rm{ + Cx + A}}\end{aligned}\)