Chapter 6: Q13E (page 334)
Evaluate the integral: \(\int {\frac{{axdx}}{{{x^2} - bx}}} \)
Short Answer
Hence, the value of \(\int {\frac{{axdx}}{{{x^2} - b}}} \) is \(a\log \left| {x - b} \right| + c\)
Chapter 6: Q13E (page 334)
Evaluate the integral: \(\int {\frac{{axdx}}{{{x^2} - bx}}} \)
Hence, the value of \(\int {\frac{{axdx}}{{{x^2} - b}}} \) is \(a\log \left| {x - b} \right| + c\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the Integral \(\int {\frac{{{x^4}dx}}{{\sqrt {{x^{10}} - 2} }}} \).
Evaluate the Integral \(\begin{aligned}{l}\int {\sqrt {{e^{2x}} - 1} dx} \\\end{aligned}\)
Evaluate the integral: \(\int {t{{\sin }^2}tdt} \)
Evaluate the Integral: \(\int {{{\tan }^2}} xdx\)
factor \({x^4} + 1\) as a difference of squares by first adding and subtracting the same quantity. Use this factorization to evaluate: \(\int {\frac{1}{{({x^4} + 1)}}} dx\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.