Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\(5 - 32\)Determine whether each integral is convergent or divergent. Evaluate those that are convergent.

12. \(\int_{ - \infty }^\infty {\left( {{y^3} - 3{y^2}} \right)} dy\)

Short Answer

Expert verified

Integral is divergent.

Step by step solution

01

Definition.

Consider the integral\(\int_{\bf{a}}^{\bf{t}} {\bf{f}} {\bf{(x)dx}}\)is for the limit with the finite number\(t \ge a\). Then, the integral is written as:

\(\int_a^\infty f (x)dx = \mathop {\lim }\limits_{t \to \infty } \int_a^t f (x)dx\)

02

Break integral

In order to determine if integral converges or diverges we evaluate both integrals i.e; \(\int_a^\infty f (x)dx\,\& \,\mathop {\lim }\limits_{t \to \infty } \int_a^t f (x)dx\) and see if both integrals are equal or not.

The given integral can be written as:

\(\int_{ - \infty }^\infty {\left( {{y^3} - 3{y^2}} \right)} dy = \int_{ - \infty }^0 {\left( {{y^3} - 3{y^2}} \right)} dy + \int_0^\infty {\left( {{y^3} - 3{y^2}} \right)} dy\)

Now evaluate both integrals separately & then check convergent or divergent.

03

Evaluate\(\int_0^\infty  {\left( {{y^3} - 3{y^2}} \right)} dy\):

Evaluate the integral as:

\(\begin{aligned}{c}\int_0^\infty {\left( {{y^3} - 3{y^2}} \right)} dy &= \mathop {\lim }\limits_{t \to \infty } \int_0^t {\left( {{y^3} - 3{y^2}} \right)} dy\\ &= \mathop {\lim }\limits_{t \to \infty } \left( {\frac{{{y^4}}}{4} - {y^3}} \right)_0^t\\ &= \mathop {\lim }\limits_{t \to \infty } \left( {{t^3}\left( {1 - \frac{t}{4}} \right)} \right)\\ &= \infty \end{aligned}\)

04

Evaluate\(\int_{ - \infty }^0 {\left( {{y^3} - 3{y^2}} \right)} dy\):

Evaluate the integral as:

\(\begin{aligned}{c}\int_{ - \infty }^0 {\left( {{y^3} - 3{y^2}} \right)} dy &= \mathop {\lim }\limits_{t \to - \infty } \int_t^0 {\left( {{y^3} - 3{y^2}} \right)} dy\\ &= \mathop {\lim }\limits_{t \to - \infty } \left( {\frac{{{y^4}}}{4} - {y^3}} \right)_t^0\\ &= \mathop {\lim }\limits_{t \to - \infty } \left( {\left( {{t^3} - \frac{{{t^4}}}{4}} \right)} \right)\\ &= \infty \end{aligned}\)

Since both integral are infinite so the given integral is divergent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free