Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the integral\(\int_{\rm{1}}^{\rm{2}} {\frac{{\sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ - 1}}} }}{{\rm{x}}}} {\rm{dx}}\)

Short Answer

Expert verified

Integral evaluation\(\int_{\rm{1}}^{\rm{2}} {\frac{{\sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ - 1}}} }}{{\rm{x}}}} {\rm{dx = }}\sqrt {\rm{3}} {\rm{ - }}\frac{{\rm{\pi }}}{{\rm{3}}}\)

Step by step solution

01

Modify the integration's bounds.

\(\begin{aligned}{l}{\rm{a = }}\frac{{\rm{\pi }}}{{\rm{3}}}\;\;\;{\rm{,b = 0}}\\{\rm{I = }}\int_{\rm{0}}^{{\rm{\pi /3}}} {\frac{{\sqrt {{\rm{se}}{{\rm{c}}^{\rm{2}}}{\rm{t - 1}}} }}{{{\rm{sect}}}}} {\rm{secttantdt}}\end{aligned}\)

02

We are aware of this\({\rm{ta}}{{\rm{n}}^{\rm{2}}}{\rm{t = se}}{{\rm{c}}^{\rm{2}}}{\rm{t - 1}}\).

\(\begin{aligned}{c}{\rm{I = }}_{\rm{0}}^{{\rm{\pi /3}}}\frac{{\sqrt {{\rm{ta}}{{\rm{n}}^{\rm{2}}}{\rm{y}}} }}{{{\rm{sect}}}}{\rm{secttantdt}}\\{\rm{ = }}_{\rm{0}}^{{\rm{\pi /3}}}\frac{{{\rm{tant}}}}{{{\rm{sect}}}}{\rm{secttantdt}}\\{\rm{ = }}\;\;\;\frac{{{\rm{\pi /3}}}}{{{\rm{ta}}{{\rm{n}}^{\rm{2}}}{\rm{tdt}}}}\\{\rm{ = }}\;\;\;\left( {{\rm{se}}{{\rm{c}}^{\rm{2}}}{\rm{t - 1}}} \right){\rm{dt}}\\{\rm{ = }}\;\;{\rm{(tant - t)}}_{\rm{0}}^{{\rm{\pi /3}}}\\{\rm{ = }}\sqrt {\rm{3}} {\rm{ - }}\frac{{\rm{\pi }}}{{\rm{3}}}\end{aligned}\)

Determine the trig's identity\(\int_{\rm{1}}^{\rm{2}} {\frac{{\sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ - 1}}} }}{{\rm{x}}}} {\rm{dx = }}\sqrt {\rm{3}} {\rm{ - }}\frac{{\rm{\pi }}}{{\rm{3}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free