Chapter 6: Q11E (page 334)
Evaluate the integral:\(\int_0^1 {\frac{2}{{2{x^2} + 3x + 1}}} dx\)
Short Answer
The value of the integral is \(\int\limits_0^1 {\frac{{2\,dx}}{{2{x^2} + 3x + 1}} = 2\,log\left( {\frac{3}{2}} \right)} \)\(\)
Chapter 6: Q11E (page 334)
Evaluate the integral:\(\int_0^1 {\frac{2}{{2{x^2} + 3x + 1}}} dx\)
The value of the integral is \(\int\limits_0^1 {\frac{{2\,dx}}{{2{x^2} + 3x + 1}} = 2\,log\left( {\frac{3}{2}} \right)} \)\(\)
All the tools & learning materials you need for study success - in one app.
Get started for freesuppose that F,G and Q are polynomials and \(\frac{{F(x)}}{{Q(x)}} = \frac{{G(x)}}{{Q(x)}}\)for all x except when\(Q(x) = 0\).prove that\(F(x) = G(x)\)for all x.
Integration \(\int\limits_0^{2\pi } {si{n^2}\left( {\frac{\theta }{3}} \right)} d\theta \).
if f is a quadratic function such that \(f(0) = 1\) and \(\int {\frac{{f(x)}}{{{x^2}{{(x + 1)}^3}}}dx} \) is a rational function, find the value of \(f'(0)\)
Write out the form of partial fraction composition of the function. Do not determine the numerical values of the coefficients.
(a) \(\frac{{{t^6} + 1}}{{{t^6} + {t^3}}}\)
Evaluate the integral:\(\int\limits_0^1 {\frac{{{x^3} - 4x - 10}}{{{x^2} - x - 6}}} dx\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.