Chapter 6: Q11E (page 360)
\(5 - 32\)Determine whether each integral is convergent or divergent. Evaluate those that are convergent.
11. \(\int_0^\infty {\frac{{{x^2}}}{{\sqrt {1 + {x^3}} }}} dx\)
Short Answer
Integral is divergent.
Chapter 6: Q11E (page 360)
\(5 - 32\)Determine whether each integral is convergent or divergent. Evaluate those that are convergent.
11. \(\int_0^\infty {\frac{{{x^2}}}{{\sqrt {1 + {x^3}} }}} dx\)
Integral is divergent.
All the tools & learning materials you need for study success - in one app.
Get started for free\({\bf{1 - 40}}\)- Evaluate the integral.
\(\int_0^{\pi /2} {\sin } \theta {e^{\cos \theta }}d\theta \)
Evaluate the Equation\(\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {co{t^3}x\,dx} \)
Evaluate the integral:\(\int\limits_0^1 {\frac{{2x + 3}}{{{{(x + 1)}^2}}}} \)
Evaluate the Integral\(\int {\frac{{{{\sec }^2}\theta {{\tan }^2}\theta d\theta }}{{\sqrt {9 - {{\tan }^2}\theta } }}} \)
To determine the value of the integral function.
What do you think about this solution?
We value your feedback to improve our textbook solutions.