Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the integral\(\int {{{\sin }^{ - 1}}\sqrt x .dx} \)

Short Answer

Expert verified

\(\int {{{{\mathop{\rm Sin}\nolimits} }^{ - 1}}\sqrt x .dx = } \) -\(\frac{{{{\sin }^{ - 1}}\sqrt x (1 - 2x)}}{2}\)+\(\frac{{\sqrt x \sqrt {1 - x} }}{2} + c\) is answer of integral

Step by step solution

01

Step  1- To find the integral \(\int {{{\sin }^{ - 1}}\sqrt x .dx} \)

Let \(\sqrt x = {\mathop{\rm Sin}\nolimits} t\)

\(x = {{\mathop{\rm Sin}\nolimits} ^2}t\)

\(dx = 2{\mathop{\rm Sin}\nolimits} t*{\mathop{\rm Cos}\nolimits} t*dt\),\(t = {{\mathop{\rm Sin}\nolimits} ^{ - 1}}\sqrt x \)

Using\({{\mathop{\rm Sin}\nolimits} ^{ - 1}}(\sin t) = t\)and \(\)\(2{\mathop{\rm Sin}\nolimits} t*{\mathop{\rm Cos}\nolimits} t = {\mathop{\rm Sin}\nolimits} 2t\)

=\(\int {t*{\mathop{\rm Sin}\nolimits} 2t.dt} \)

Where t is first function and \({\mathop{\rm Sin}\nolimits} 2t\) is second function

02

Step  2-   Using By Parts Method that is ILATE

=\(\begin{aligned}{l}t\int {{\mathop{\rm Sin}\nolimits} 2t.dt} - \int {(\frac{{dt}}{{dt}}\int {{\mathop{\rm Sin}\nolimits} 2t} } ).dt\\\end{aligned}\)

=(-)\(\begin{aligned}{l}\frac{{{\mathop{\rm Cos}\nolimits} 2t}}{2} - \int 1 *(\frac{{{\mathop{\rm Cos}\nolimits} 2t}}{2}).dt\\\end{aligned}\)

=\(( - )t*\frac{{{\mathop{\rm Cos}\nolimits} 2t}}{2} + \frac{{{\mathop{\rm Sin}\nolimits} 2t}}{4} + c\)

Using,

\(\begin{aligned}{l}{\mathop{\rm Cos}\nolimits} 2t = 1 - 2{{\mathop{\rm Sin}\nolimits} ^2}t,\\{\mathop{\rm Sin}\nolimits} 2t = 2{\mathop{\rm Sin}\nolimits} t*{\mathop{\rm Cos}\nolimits} t\\\end{aligned}\)

=\(\frac{{{{\sin }^{ - 1}}\sqrt x (1 - 2x)}}{2} + \)\(\frac{{2\sqrt x \sqrt {1 - x} }}{4} + c\)
Hence, \(\int {{{{\mathop{\rm Sin}\nolimits} }^{ - 1}}\sqrt x .dx = } \) -\(\frac{{{{\sin }^{ - 1}}\sqrt x (1 - 2x)}}{2}\)+\(\frac{{\sqrt x \sqrt {1 - x} }}{2} + c\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free