Chapter 6: Q10E (page 334)
Evaluate the integral:\(\int {\frac{y}{{(y + 4)(2y - 1)}}} dy\).
Short Answer
The value of the integral is \(log{(y + 4)^{4/9}} + log{(2y - 1)^{1/18}} + c. \)
Chapter 6: Q10E (page 334)
Evaluate the integral:\(\int {\frac{y}{{(y + 4)(2y - 1)}}} dy\).
The value of the integral is \(log{(y + 4)^{4/9}} + log{(2y - 1)^{1/18}} + c. \)
All the tools & learning materials you need for study success - in one app.
Get started for freefactor \({x^4} + 1\) as a difference of squares by first adding and subtracting the same quantity. Use this factorization to evaluate: \(\int {\frac{1}{{({x^4} + 1)}}} dx\)
Evaluate the integral\(\int {\frac{{\sqrt {2{y^2} - 3} }}{{{y^2}}}} dy\)
Use a computer algebra system to evaluate the integral. Compare the answer with the result of using tables. If the answers are not the same, show that they are equivalent.
\(\int {{{\tan }^5}} xdx\)
Evaluate the Integral
\(\int {cose{c^4}x\,co{t^6}x\,dx} \)
Evaluate the integral\(\int {x*{\mathop{\rm Sin}\nolimits} ({x^2})*{\mathop{\rm Cos}\nolimits} (3{x^2}).dx} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.