Chapter 6: Q10E (page 360)
\(5 - 32\)Determine whether each integral is convergent or divergent. Evaluate those that are convergent.
10. \(\int_{ - \infty }^0 {{2^r}} dr\)
Short Answer
Integral is convergent & converges to\(\frac{1}{{\ln 2}}\).
Chapter 6: Q10E (page 360)
\(5 - 32\)Determine whether each integral is convergent or divergent. Evaluate those that are convergent.
10. \(\int_{ - \infty }^0 {{2^r}} dr\)
Integral is convergent & converges to\(\frac{1}{{\ln 2}}\).
All the tools & learning materials you need for study success - in one app.
Get started for free\({\bf{1 - 40}}\)- Evaluate the integral.
\(\int_0^{\pi /2} {\sin } \theta {e^{\cos \theta }}d\theta \)
Evaluate the Equation\(\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {co{t^3}x\,dx} \)
Write out the form of the partial fraction decomposition of the function (as in Example 6). Do not determine the numerical values of the coefficients.
(a)
\(\frac{{{x^4} - 2{x^3} + {x^2} + 2x - 1}}{{{x^2} - 2x + 1}}\)
(b)
\(\frac{{{x^2} - 1}}{{{x^3} + {x^2} + x}}\)
Evaluate the integral\(\int {\frac{{3t - 2}}{{t + 1}}} dt\).
Evaluate the integral:\(\int {\frac{{{x^2} + 2x - 1}}{{{x^3} - x}}dx} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.