Chapter 8: Q9RE (page 498)
Determine whether the series is convergent or divergent \(\sum\limits_{{\rm{n = 1}}}^\infty {\frac{{\rm{n}}}{{{{\rm{n}}^{\rm{3}}}{\rm{ + 1}}}}} .\)
Short Answer
The series is convergent.
Chapter 8: Q9RE (page 498)
Determine whether the series is convergent or divergent \(\sum\limits_{{\rm{n = 1}}}^\infty {\frac{{\rm{n}}}{{{{\rm{n}}^{\rm{3}}}{\rm{ + 1}}}}} .\)
The series is convergent.
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = {\left( {1 + \frac{2}{n}} \right)^n}\)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \left\{ {\frac{{(2n - 1)!}}{{(2n + 1)!}}} \right\}\)
Determine whether the series is convergent or divergent: \(\sum\limits_{n = 1}^\infty {\sin \frac{1}{n}} \).
(a) Use the sum of the first 10 terms and Exercise 33(a) to estimate the sum of the series\(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^2}}}} \) . How good is this estimate?
(b) Improve this estimate using Exercise 33(b) with n = 10
(c) Find a value of n that will ensure that the error in the approximation \(S \approx {S_n}\) is less than 0.01
\({\bf{37 - 40}}\) Determine whether the sequence is increasing, decreasing, or not monotonic. Is the sequence bounded?
\({{\bf{a}}_{\bf{n}}}{\bf{ = n( - 1}}{{\bf{)}}^{\bf{n}}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.