Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\({\rm{f(x) = ta}}{{\rm{n}}^{{\rm{ - 1}}}}{\rm{x,a = 1}}\)

Short Answer

Expert verified

The Taylor polynomial is \({T_3}(x) = \frac{\pi }{4} + \frac{{(x - 1)}}{2} - \frac{{{{(x - 1)}^2}}}{4} + \frac{{{{(x - 1)}^3}}}{{12}}\).

Step by step solution

01

Concept Introduction

Taylor polynomials are function approximations that improve in quality as n rises. Taylor's theorem calculates the inaccuracy introduced by such approximations in terms of numbers. If a function's Taylor series is convergent, the sum of its Taylor polynomials is the limit of the infinite sequence of Taylor polynomials.

02

Sum of the Taylor polynomials

Solve the given equation,

\(\begin{array}{l}{T_n}(x){\rm{ centered at }}a{\rm{ is }}\sum\limits_{r = 0}^n {\frac{{{f^r}(a){{(x - a)}^r}}}{{r!}}} \\{T_3}(x) = \frac{{f(1) \cdot {{(x - 1)}^0}}}{{0!}} + \frac{{{f^\prime }(1) \cdot {{(x - 1)}^1}}}{{1!}} + \frac{{{f^{\prime \prime }}(1) \cdot {{(x - 1)}^2}}}{{2!}} + \frac{{{f^{\prime \prime \prime }}(1) \cdot {{(x - 1)}^3}}}{{3!}}\end{array}\)\(\begin{array}{l}f(x) = {\tan ^{ - 1}}x \Rightarrow f(1) = \frac{\pi }{4}\\{f^\prime }(x) = \frac{1}{{1 + {x^2}}} \Rightarrow {f^\prime }(1) = \frac{1}{2}\\{f^{\prime \prime }}(x) = - \frac{{2x}}{{{{\left( {1 + {x^2}} \right)}^2}}} \Rightarrow {f^{\prime \prime }}(1) = - \frac{1}{2}\\{f^{\prime \prime \prime }}(x) = \frac{{6{x^2} - 2}}{{{{\left( {1 + {x^2}} \right)}^3}}} \Rightarrow {f^{\prime \prime \prime }}(1) = \frac{1}{2}\end{array}\)

On solving further,

Therefore

\(\begin{array}{l}{T_3}(x) = \frac{{f(1) \cdot {{(x - 1)}^0}}}{{0!}} + \frac{{{f^\prime }(1) \cdot {{(x - 1)}^1}}}{{1!}} + \frac{{{f^{\prime \prime }}(1) \cdot {{(x - 1)}^2}}}{{2!}} + \frac{{{f^{\prime \prime \prime }}(1) \cdot }}{{3!}}\\{T_3}(x) = \frac{\pi }{4} \cdot \frac{1}{1} + \frac{1}{2} \cdot \frac{{(x - 1)}}{1} - \frac{1}{2} \cdot \frac{{{{(x - 1)}^2}}}{2} + \frac{1}{2} \cdot \frac{{{{(x - 1)}^3}}}{6}\\{T_3}(x) = \frac{\pi }{4} + \frac{{(x - 1)}}{2} - \frac{{{{(x - 1)}^2}}}{4} + \frac{{{{(x - 1)}^3}}}{{12}}\end{array}\)

Therefore, the required Taylor polynomial is \({T_3}(x) = \frac{\pi }{4} + \frac{{(x - 1)}}{2} - \frac{{{{(x - 1)}^2}}}{4} + \frac{{{{(x - 1)}^3}}}{{12}}\).

03

Plotting the required graph

In the Graph below:

\({\rm{y = f(x)}}\) is the black curve

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free