Chapter 8: Q68E (page 489)
68. If \(f(x) = {(1 + {x^3})^{30}}\), what is \({f^{58}}(0)\)
Short Answer
\({f^{58}}(0) = 0\)
Chapter 8: Q68E (page 489)
68. If \(f(x) = {(1 + {x^3})^{30}}\), what is \({f^{58}}(0)\)
\({f^{58}}(0) = 0\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the value of \(c\) if \(\sum\limits_{n = 2}^\infty {{{(1 + c)}^{ - n}} = 2} \)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \frac{{{{(\ln n)}^2}}}{n}\)
Determine whether the series is convergent or divergent: \(\sum\limits_{n = 1}^\infty {\sin \frac{1}{n}} \).
Find the values of p for which the series is \(\sum\limits_{n = 1}^\infty {\frac{{lnn}}{{{n^p}}}} \)convergent.
Find the values of \(x\)for which the series converges. Find the sum of the series for those values of \(x\).
\({\sum\limits_{n = 1}^\infty {\left( { - 5} \right)} ^n}{x^n}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.